A modular design for distributed measurement of human–robot interaction forces in wearable devices

K Ghonasgi, SN Yousaf, P Esmatloo, AD Deshpande - Sensors, 2021 - mdpi.com
Sensors, 2021mdpi.com
Measurement of interaction forces distributed across the attachment interface in wearable
devices is critical for understanding ergonomic physical human–robot interaction (pHRI).
The main challenges in sensorization of pHRI interfaces are (i) capturing the fine nature of
force transmission from compliant human tissue onto rigid surfaces in the wearable device
and (ii) utilizing a low-cost and easily implementable design that can be adapted for a
variety of human interfaces. This paper addresses both challenges and presents a modular …
Measurement of interaction forces distributed across the attachment interface in wearable devices is critical for understanding ergonomic physical human–robot interaction (pHRI). The main challenges in sensorization of pHRI interfaces are (i) capturing the fine nature of force transmission from compliant human tissue onto rigid surfaces in the wearable device and (ii) utilizing a low-cost and easily implementable design that can be adapted for a variety of human interfaces. This paper addresses both challenges and presents a modular sensing panel that uses force-sensing resistors (FSRs) combined with robust electrical and mechanical integration principles that result in a reliable solution for distributed load measurement. The design is demonstrated through an upper-arm cuff, which uses 24 sensing panels, in conjunction with the Harmony exoskeleton. Validation of the design with controlled loading of the sensorized cuff proves the viability of FSRs in an interface sensing solution. Preliminary experiments with a human subject highlight the value of distributed interface force measurement in recognizing the factors that influence ergonomic pHRI and elucidating their effects. The modular design and low cost of the sensing panel lend themselves to extension of this approach for studying ergonomics in a variety of wearable applications with the goal of achieving safe, comfortable, and effective human–robot interaction.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References