A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease

CA Manore, KS Hickmann, JM Hyman… - Journal of biological …, 2015 - Taylor & Francis
Journal of biological dynamics, 2015Taylor & Francis
Mosquito-borne diseases cause significant public health burden and are widely re-emerging
or emerging. Understanding, predicting, and mitigating the spread of mosquito-borne
disease in diverse populations and geographies are ongoing modelling challenges. We
propose a hybrid network-patch model for the spread of mosquito-borne pathogens that
accounts for individual movement through mosquito habitats, extending the capabilities of
existing agent-based models (ABMs) to include vector-borne diseases. The ABM are …
Mosquito-borne diseases cause significant public health burden and are widely re-emerging or emerging. Understanding, predicting, and mitigating the spread of mosquito-borne disease in diverse populations and geographies are ongoing modelling challenges. We propose a hybrid network-patch model for the spread of mosquito-borne pathogens that accounts for individual movement through mosquito habitats, extending the capabilities of existing agent-based models (ABMs) to include vector-borne diseases. The ABM are coupled with differential equations representing ‘clouds’ of mosquitoes in patches accounting for mosquito ecology. We adapted an ABM for humans using this method and investigated the importance of heterogeneity in pathogen spread, motivating the utility of models of individual behaviour. We observed that the final epidemic size is greater in patch models with a high risk patch frequently visited than in a homogeneous model. Our hybrid model quantifies the importance of the heterogeneity in the spread of mosquito-borne pathogens, guiding mitigation strategies.
Taylor & Francis Online
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References