Sorption-enhanced-steam-reforming (SESR) is a thermochemical conversion technology that produces a high-purity hydrogen stream by utilizing in-situ removal of CO2 with a sorbent. In this paper, the advantages and disadvantages of CaO based sorbents, alkali-metal based sorbents (Na2ZrO3, Li2ZrO3 and Li4SiO4), hydrotalcite based sorbents, bifunctional materials and sorbents prepared from wastes are briefly discussed, and the techniques to improve the sorption properties of these CO2 sorbents are summarized. In the process of hydrogen production by sorption-enhanced-steam-reforming, the selection of suitable high-temperature CO2 sorbent is the key to produce high purity hydrogen. Furthermore, the hydrogen-production performance of the above-mentioned sorbents in the SESR process is investigated and summarized. Finally, a future perspective and some suggestions regarding these five types of sorbents are put forward.