The performance of man-made materials can be improved by exploring new structures inspired by the architecture of biological materials. Natural materials, such as nacre (mother-of-pearl), can have outstanding mechanical properties due to their complicated architecture and hierarchical structure at the nano-, micro-and meso-levels which have evolved over millions of years. This review describes the numerous experimental methods explored to date to produce composites with structures and mechanical properties similar to those of natural nacre. The materials produced have sizes ranging from nanometres to centimetres, processing times varying from a few minutes to several months and a different range of mechanical properties that render them suitable for various applications. For the first time, these techniques have been divided into those producing bulk materials, coatings and free-standing films. This is due to the fact that the material's application strongly depends on its dimensions and different results have been reported by applying the same technique to produce materials with different sizes. The limitations and capabilities of these methodologies have been also described.