In this study, four different TZNT based alloys, (Ti55Zr25Nb10Ta10, (Ti55Zr25Nb10Ta10)99.5Fe0.5, (Ti55Zr25Nb10Ta10)98Sn2, and (Ti55Zr25Nb10Ta10)98.5Ag1.5, (at. %), designated TZNT, TZNT-Fe, TZNT-Sn, TZNT-Ag, respectively) are produced by non-consumable vacuum arc melting and suction casting. These alloys using the d-electron alloy design method and considering the criteria of [Mo]eq and (e/a) ratio for β-phase Ti alloys are designed. The microstructure, mechanical properties, and corrosion behavior of the alloys are investigated via optical microscopy, scanning electron microscopy, X-ray diffraction, nanoindentation, and electrochemical tests. The designed alloys exhibit dendritic morphology, however, the TZNT-Ag alloy indicates a more homogenous microstructure after suction casting. X-ray diffraction analyses reveal not only the beta phase in the TZNT, TZNT-Fe, and TZNT-Ag alloys, but also beta lean/beta rich separation in the TZNT-Sn alloy. In addition to the microstructural features, the new TZNT alloys show very high ductility upon cold compressive deformation, as well as the lowest Young’s modulus (65.54±1.7 GPa, P<0.05) is achieved in TZNT-Ag alloy. Furthermore, the compressive yield stress to Young’s modulus (Ycys/E) ratio of the designed alloys is in the range of 0.92–1.08%. In terms of corrosion behavior, Ag increases the corrosion resistance of the TZNT alloy in Ringer's solution. As a result, owing to the effect of Ag on the optimization of the mechanical properties and corrosion resistance of the TZNT alloy, the as-cast Ag-containing TZNT alloy can be developed to be a promising candidate for biomedical applications.