The effective application of sliding mode control to mechanical systems is not straightforward because of the sensitivity of these systems to chattering. Higher-order sliding modes can counteract this phenomenon by confining the switching control to the higher derivatives of the mechanical control variable, so that the latter results are continuous. Generally, this approach requires the availability of a number of time derivatives of the sliding variable, and, in the presence of noise, this requirement could be a practical limitation. A class of second-order sliding mode controllers, guaranteeing finite-time convergence for systems with relative degree two between the sliding variable and the switching control, could be helpful both in reducing the number of differentiator stages in the controller and in dealing with unmodelled actuator dynamics. In this paper different second-order sliding mode controllers, previously presented in the literature, are shown to belong to the above cited class, and some challenging control problems involving mechanical systems are addressed and solved. Simulations and experimental results are provided throughout the paper.