A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex

S Yao, Q Wang, KE Hirokawa, B Ouellette… - Nature …, 2023 - nature.com
S Yao, Q Wang, KE Hirokawa, B Ouellette, R Ahmed, J Bomben, K Brouner, L Casal…
Nature neuroscience, 2023nature.com
Identification of structural connections between neurons is a prerequisite to understanding
brain function. Here we developed a pipeline to systematically map brain-wide
monosynaptic input connections to genetically defined neuronal populations using an
optimized rabies tracing system. We used mouse visual cortex as the exemplar system and
revealed quantitative target-specific, layer-specific and cell-class-specific differences in its
presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and …
Abstract
Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果