Adaptive feature projection with distribution alignment for deep incomplete multi-view clustering

J Xu, C Li, L Peng, Y Ren, X Shi… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
J Xu, C Li, L Peng, Y Ren, X Shi, HT Shen, X Zhu
IEEE Transactions on Image Processing, 2023ieeexplore.ieee.org
Incomplete multi-view clustering (IMVC) analysis, where some views of multi-view data
usually have missing data, has attracted increasing attention. However, existing IMVC
methods still have two issues: 1) they pay much attention to imputing or recovering the
missing data, without considering the fact that the imputed values might be inaccurate due to
the unknown label information, 2) the common features of multiple views are always learned
from the complete data, while ignoring the feature distribution discrepancy between the …
Incomplete multi-view clustering (IMVC) analysis, where some views of multi-view data usually have missing data, has attracted increasing attention. However, existing IMVC methods still have two issues: 1) they pay much attention to imputing or recovering the missing data, without considering the fact that the imputed values might be inaccurate due to the unknown label information, 2) the common features of multiple views are always learned from the complete data, while ignoring the feature distribution discrepancy between the complete and incomplete data. To address these issues, we propose an imputation-free deep IMVC method and consider distribution alignment in feature learning. Concretely, the proposed method learns the features for each view by autoencoders and utilizes an adaptive feature projection to avoid the imputation for missing data. All available data are projected into a common feature space, where the common cluster information is explored by maximizing mutual information and the distribution alignment is achieved by minimizing mean discrepancy. Additionally, we design a new mean discrepancy loss for incomplete multi-view learning and make it applicable in mini-batch optimization. Extensive experiments demonstrate that our method achieves the comparable or superior performance compared with state-of-the-art methods.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果