Adaptive guidance and integrated navigation with reinforcement meta-learning

B Gaudet, R Linares, R Furfaro - Acta Astronautica, 2020 - Elsevier
Acta Astronautica, 2020Elsevier
This paper proposes a novel adaptive guidance system developed using reinforcement
meta-learning with a recurrent policy and value function approximator. The use of recurrent
network layers allows the deployed policy to adapt in real time to environmental forces
acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent
with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging
environments with unknown but highly variable dynamics. These tasks include a safe Mars …
Abstract
This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果