Advanced residual stress analysis and FEM simulation on heteroepitaxial 3C–SiC for MEMS application

R Anzalone, G D'arrigo, M Camarda… - Journal of …, 2011 - ieeexplore.ieee.org
Journal of Microelectromechanical Systems, 2011ieeexplore.ieee.org
SiC is a candidate material for microelectromechanical and nanoelectromechanical
systems, but the high residual stress created during the film grow limits the development of
the material for these applications. To understand the stress relaxation mechanism in hetero-
epitaxial 3C-SiC films, different micromachined free-standing structures have been realized.
In this paper, assisted by finite-element method (FEM), a micromachined planar rotating
probe was developed for residual stress analysis to split the stress into the following two …
SiC is a candidate material for microelectromechanical and nanoelectromechanical systems, but the high residual stress created during the film grow limits the development of the material for these applications. To understand the stress relaxation mechanism in hetero-epitaxial 3C-SiC films, different micromachined free-standing structures have been realized. In this paper, assisted by finite-element method (FEM), a micromachined planar rotating probe was developed for residual stress analysis to split the stress into the following two components: 1) the gradient residual stress (σ 1 ) related to the film defects and 2) the uniform stress (σ 0 ) related to the substrate. Transmission electron microscopy characterization studies about the defect formation and the defect evolution as a function of thickness on 3C-SiC on the Si substrate revealed the problems due to the incorrect linear stress approximation in a heteroepitaxial thin film. With FEM, an exponential approximation of the stress relationship was studied, yielding a better fit with the experimental data. This paper shows that the new approximation of the total residual stress function reduces the actual disagreement between experimental and simulation data.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References