All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation

YT Tsai, ZC Shih - ACM Transactions on graphics (TOG), 2006 - dl.acm.org
YT Tsai, ZC Shih
ACM Transactions on graphics (TOG), 2006dl.acm.org
This paper introduces a new data representation and compression technique for
precomputed radiance transfer (PRT). The light transfer functions and light sources are
modeled with spherical radial basis functions (SRBFs). A SRBF is a rotation-invariant
function that depends on the geodesic distance between two points on the unit sphere.
Rotating functions in SRBF representation is as straightforward as rotating the centers of
SRBFs. Moreover, high-frequency signals are handled by adjusting the bandwidth …
This paper introduces a new data representation and compression technique for precomputed radiance transfer (PRT). The light transfer functions and light sources are modeled with spherical radial basis functions (SRBFs). A SRBF is a rotation-invariant function that depends on the geodesic distance between two points on the unit sphere. Rotating functions in SRBF representation is as straightforward as rotating the centers of SRBFs. Moreover, high-frequency signals are handled by adjusting the bandwidth parameters of SRBFs. To exploit inter-vertex coherence, the light transfer functions are further classified iteratively into disjoint clusters, and tensor approximation is applied within each cluster. Compared with previous methods, the proposed approach enables real-time rendering with comparable quality under high-frequency lighting environments. The data storage is also more compact than previous all-frequency PRT algorithms.
ACM Digital Library
以上显示的是最相近的搜索结果。 查看全部搜索结果