Ambient high-frequency seismic surface waves in the firn column of central west Antarctica

J Chaput, R Aster, M Karplus, N Nakata - Journal of Glaciology, 2022 - cambridge.org
Journal of Glaciology, 2022cambridge.org
Firn is the pervasive surface material across Antarctica, and its structures reflect its formation
and history in response to environmental perturbations. In addition to the role of firn in
thermally isolating underlying glacial ice, it defines near-surface elastic and density structure
and strongly influences high-frequency (> 5 Hz) seismic phenomena observed near the
surface. We investigate high-frequency seismic data collected with an array of seismographs
deployed on the West Antarctic Ice Sheet (WAIS) near WAIS Divide camp in January 2019 …
Firn is the pervasive surface material across Antarctica, and its structures reflect its formation and history in response to environmental perturbations. In addition to the role of firn in thermally isolating underlying glacial ice, it defines near-surface elastic and density structure and strongly influences high-frequency (> 5 Hz) seismic phenomena observed near the surface. We investigate high-frequency seismic data collected with an array of seismographs deployed on the West Antarctic Ice Sheet (WAIS) near WAIS Divide camp in January 2019. Cross-correlations of anthropogenic noise originating from the approximately 5 km-distant camp were constructed using a 1 km-diameter circular array of 22 seismographs. We distinguish three Rayleigh (elastic surface) wave modes at frequencies up to 50 Hz that exhibit systematic spatially varying particle motion characteristics. The horizontal-to-vertical ratio for the second mode shows a spatial pattern of peak frequencies that matches particle motion transitions for both the fundamental and second Rayleigh modes. This pattern is further evident in the appearance of narrow band spectral peaks. We find that shallow lateral structural variations are consistent with these observations, and model spectral peaks as Rayleigh wave amplifications within similarly scaled shallow basin-like structures delineated by the strong velocity and density gradients typical of Antarctic firn.
Cambridge University Press
以上显示的是最相近的搜索结果。 查看全部搜索结果