The aim of this paper is to show a climatology of Mesoscale Convective Systems (MCS) in the NE of the Iberian Peninsula, on the basis of meteorological radar observations. Special attention was paid to those cases that have produced heavy rainfalls during the period 1996–2000. Identification of the MCS was undertaken using two procedures. Firstly, the precipitation structures at the lowest level were recognised by means of a 2D algorithm that distinguishes between convective and non-convective contribution. Secondly, the convective cells were identified using a 3D procedure quite similar to the SCIT (Storm Cell Identification and Tracking) algorithm that looks for the reflectivity cores in each radar volume. Finally, the convective cells (3D) were associated with the 2D structures (convective rainfall areas), in order to characterize the complete MCS. Once this methodology was presented the paper offers a proposal for classifying the precipitation systems, and particularly the MCS. 57 MCS structures were classified: 49% of them were identified as linearly well-organised systems, called TS (39%), LS (18%) and NS (43%). In addition to the classification, the following items were analysed for each MCS found: duration, season, time of day, area affected and direction of movement, and main radar parameters related with convection. The average features of those MCS show an area of about 25000 km2, Zmax values of 47 dBz, an echotop of 12 km, the maximum frequency at 12 UTC and early afternoon and a displacement towards E-NE. The study was completed by analysing the field at surface, the presence of a mesoscale low near the system and the quasi-stationary features of three cases related with heavy rainfalls. Maximum rainfall (more then 200 mm in 6 h) was related with the presence of a cyclone in combination with the production of a convective train effect.