Antiferromagnetic magnons as highly squeezed Fock states underlying quantum correlations

A Kamra, E Thingstad, G Rastelli, RA Duine, A Brataas… - Physical Review B, 2019 - APS
Physical Review B, 2019APS
Employing the concept of two-mode squeezed states from quantum optics, we demonstrate
a revealing physical picture for the antiferromagnetic ground state and excitations.
Superimposed on a Néel ordered configuration, a spin-flip restricted to one of the sublattices
is called a sublattice magnon. We show that an antiferromagnetic spin-up magnon is
composed of a quantum superposition of states with n+ 1 spin-up and n spin-down
sublattice magnons and is thus an enormous excitation despite its unit net spin …
Employing the concept of two-mode squeezed states from quantum optics, we demonstrate a revealing physical picture for the antiferromagnetic ground state and excitations. Superimposed on a Néel ordered configuration, a spin-flip restricted to one of the sublattices is called a sublattice magnon. We show that an antiferromagnetic spin-up magnon is composed of a quantum superposition of states with spin-up and spin-down sublattice magnons and is thus an enormous excitation despite its unit net spin. Consequently, its large sublattice spin can amplify its coupling to other excitations. Employing von Neumann entropy as a measure, we show that the antiferromagnetic eigenmodes manifest a high degree of entanglement between the two sublattices, thereby establishing antiferromagnets as reservoirs for strong quantum correlations. Based on these insights, we outline strategies for exploiting the strong quantum character of antiferromagnetic (squeezed) magnons and give an intuitive explanation for recent experimental and theoretical findings in antiferromagnetic magnon spintronics.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果