Asymptotic expansion of the Witten deformation of the analytic torsion

D Burghelea, L Friedlander, T Kappeler - journal of functional analysis, 1996 - Elsevier
D Burghelea, L Friedlander, T Kappeler
journal of functional analysis, 1996Elsevier
Given a compact Riemannian manifold (Md, g), a finite dimensional representationρ: π1
(M)→ GL (V) of the fundamental groupπ1 (M) on a vector spaceVof dimensionland a
Hermitian structureμon the flat vector bundle [formula] associated toρ, Ray–Singer [RS] have
introduced the analytic torsionT= T (M, ρ, g, μ)> 0. Witten's deformationdq (t) of the exterior
derivativedq, dq (t)= e− htdqeht, withh: M→ Ra smooth Morse function, can be used to define
a deformationT (h, t)> 0 of the analytic torsionTwithT (h, 0)= T. The main results of this paper …
Given a compact Riemannian manifold (Md, g), a finite dimensional representationρ:π1(M)→GL(V) of the fundamental groupπ1(M) on a vector spaceVof dimensionland a Hermitian structureμon the flat vector bundle[formula]associated toρ, Ray–Singer [RS] have introduced the analytic torsionT=T(M, ρ, g, μ)>0. Witten's deformationdq(t) of the exterior derivativedq,dq(t)=e−htdqeht, withh:M→Ra smooth Morse function, can be used to define a deformationT(h, t)>0 of the analytic torsionTwithT(h, 0)=T. The main results of this paper are to provide, assuming that gradghis Morse Smale, an asymptotic expansion for logT(h, t) fort→∞ of the form[formula]and to present two different formulae fora0. As an application we obtain a shorter derivation of results due to Ray–Singer [RS], Cheeger [Ch], Müller [Mu1, 2] which, in increasing generality, concern the equality for odd dimensional manifolds of the analytic torsion with the average of the Reidemeister torsion corresponding to the triangulation T =(h, g) and the dual triangulation T D =(d−h, g).
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果