In this work is reported a new method for automatic segmentation of the boundary of the prostate, in transurethral ultrasound images. The scheme is based on a robust automatic initialization of an active shape model (ASM) of the prostate, which is subsequently fitted to the boundary of the gland. The initialization of the ASM is based on pixel classification to estimate the prostate region in an ultrasound image, followed by automatic adjustment – using a multipopulation genetic algorithm (MPGA) – of the initial pose of the ASM to the binary image produced by the classifier. The initial pose is next adjusted to the gray level ultrasound image, using the MPGA. After automatic initialization, the ASM is adjusted to the gray level ultrasound image to produce the final prostate contour. The method provides fast and robust segmentation of the prostate boundary. Validation results on 22 ultrasound images are reported with 1.74mm of mean boundary error and an estimated processing time of 66s per image. Our automatic initialization method can be applied with the ASMs of different organs in various imaging modalities.