The development of high-performance recyclable polymers represents a circular plastics economy to address the urgent issues of plastic sustainability. Herein, we design a series of biobased seven-membered-ring esters containing aromatic and aliphatic moieties. Ring-opening polymerization studies showed that they readily polymerize with excellent activity (TOF up to 2.1 × 105 h–1) at room temperature and produce polymers with high molecular weight (Mn up to 438 kg/mol). The variety of functionalities allows us to investigate the substitution effect on polymerizability/recyclability of monomers and properties of polymers (such as Tgs from −1 to 79 °C). Remarkably, a stereocomplexed P(M2) exhibited significantly increased Tm and crystallization rate. More importantly, product P(M)s were capable of depolymerizing into their monomers in solution or bulk with high efficiency, thus establishing their circular life cycle.