Mining and geogenic activities can lead to elevated concentrations of potentially toxic elements in soil. Biochar amendment to soil is a cost-effective technology and environmentally friendly approach to control soil pollution, improve phytoremediation and mitigate health risks due to agricultural products. Greenhouse pot experiments were conducted to investigate the effects of rice husk biochar on alfalfa biomass, metal bioaccumulation and arsenic speciation. Results indicated that rice husk biochar amendments to contaminated soil increased plants biomass by improving soil fertility and available nutrients. Biochar also increased soil cation change capacity, dissolved organic carbon, while decreased available concentrations of potentially toxic elements (except for arsenic). The accumulation of nickel, lead, cadmium and zinc (except for chromium and arsenic) significantly (P ≤ 0.05) decreased as compared with unamended control plants. In addition, increases were observed for inorganic arsenite and arsenate. Current findings demonstrate that rice husk biochar can be used as a beneficial amendment for contaminated soil. However, further field experiments are needed to validate its long-term effectiveness where environmental factors are diverse and complex.