Biofilm‐eradicating properties of quaternary ammonium amphiphiles: simple mimics of antimicrobial peptides

MC Jennings, LE Ator, TJ Paniak, KPC Minbiole… - …, 2014 - Wiley Online Library
MC Jennings, LE Ator, TJ Paniak, KPC Minbiole, WM Wuest
ChemBioChem, 2014Wiley Online Library
Bacterial biofilms are difficult to eradicate because of reduced antibiotic sensitivity and
altered metabolic processes; thus, the development of new approaches to biofilm
eradication is urgently needed. Antimicrobial peptides (AMPs) and quaternary ammonium
cations (QACs) are distinct, yet well‐known, classes of antibacterial compounds. By
mapping the general regions of charge and hydrophobicity of QACs onto AMP structures, we
designed a small library of QACs to serve as simple AMP mimics. In order to explore the role …
Abstract
Bacterial biofilms are difficult to eradicate because of reduced antibiotic sensitivity and altered metabolic processes; thus, the development of new approaches to biofilm eradication is urgently needed. Antimicrobial peptides (AMPs) and quaternary ammonium cations (QACs) are distinct, yet well‐known, classes of antibacterial compounds. By mapping the general regions of charge and hydrophobicity of QACs onto AMP structures, we designed a small library of QACs to serve as simple AMP mimics. In order to explore the role that cationic charge plays in biofilm eradication, structures were varied with respect to cationic character, distribution of charge, and alkyl side chain. The reported compounds possess minimum biofilm eradication concentrations (MBEC) as low as 25 μM against Gram‐positive biofilms, making them the most active anti‐biofilm structures reported to date. These potent AMP mimics were synthesized in 1–2 steps and hint at the minimal structural requirements for biofilm destruction.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果