Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and …

AC Agnello, M Bagard, ED van Hullebusch… - Science of the Total …, 2016 - Elsevier
Science of the Total Environment, 2016Elsevier
Biological remediation technologies are an environmentally friendly approach for the
treatment of polluted soils. This study evaluated through a pot experiment four
bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago
sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-
assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate
levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110 mg kg− 1 DW, respectively) and …
Abstract
Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110 mg kg− 1 DW, respectively) and petroleum hydrocarbons (3800 mg kg− 1 DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn > Cu > Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果