This research explores the potential of using municipal solid waste incinerator bottom ash (MSWIBA) as a partial replacement for fine aggregate and ordinary Portland cement (OPC) as a stabilizer in the production of compressed stabilized earth blocks (CSEBs). The study investigates the effect of varying levels of cement content (ranging from 0% to 10%) and MSWIBA content (ranging from 0% to 25%) on the strength and durability of CSEBs. The strength characteristics of CSEBs were evaluated through tests such as wet and dry compressive strength, flexural strength, water absorption, and stress–strain behavior, while durability was tested through wetting–drying cyclic tests. The results indicated that CSEB blocks made with 20% MSWIBA content and 10% cement were able to fulfill strength criteria. Additionally, using these blocks could result in cost savings of 8% during construction when compared to using fired clay bricks (FCB). Furthermore, varying the cement content while maintaining a constant proportion of MSWIBA showed a significant change in the stress–strain behavior and a cost analysis performed for CSEBs stabilized with the optimal quantity of MSWIBA-OPC combination showed that they can be a viable alternative to conventional earth blocks, providing an eco-friendly, sustainable, and cost-effective solution for construction initiatives.