The morphology of different styrene/butadiene (SB) block copolymers with triblock architectures was investigated using tapping mode scanning force microscopy (SFM). Comparative analysis of the morphology of the samples at the polymer/substrate interface of solution-cast films and in bulk was performed. It was found that, besides the total phase volume ratio, the interfacial structure between the incompatible chains determines the phase morphology and mechanical properties of the investigated block copolymers. The asymmetric SBS triblock copolymer (φps( 74 vol%) forms, as expected, a cylindrical morphology with hexagonally packed polybutadiene (PB) cylinders in the polystyrene (PS) matrix. Depending on the interfacial structure, block configuration, and the hard/soft phase ratio, other triblock copolymers (φps( 74 vol% and 65 vol%) show lamellae and randomly distributed PS cylinders in a random styrene/butadiene copolymer S/B matrix, respectively.