DSMBind: SE (3) denoising score matching for unsupervised binding energy prediction and nanobody design

W Jin, X Chen, A Vetticaden, S Sarzikova… - bioRxiv, 2023 - biorxiv.org
binding predictor because protein binding depends on the geometric shape of two proteins
[8]. In this work, we propose DSMBind, an unsupervised binding energy prediction … an energy-…

SE (3) denoising score matching for unsupervised binding energy prediction and nanobody design

W Jin, C Uhler, N Hacohen - NeurIPS 2023 Generative AI and Biology … - openreview.net
… In summary, DSMBind offers a versatile framework for binding energy prediction and binder
… In this work, we propose DSMBind, an unsupervised binding energy prediction framework …

DualBind: A Dual-Loss Framework for Protein-Ligand Binding Affinity Prediction

M Liu, SG Paliwal - arXiv preprint arXiv:2406.07770, 2024 - arxiv.org
… (DSM) to accurately learn the binding energy function. DualBind … More specifically, the
denoising score matching technique has … To facilitate a meaningful comparison with DSMBind, we …

Unsupervised protein-ligand binding energy prediction via neural euler's rotation equation

W Jin, S Sarkizova, X Chen… - Advances in Neural …, 2024 - proceedings.neurips.cc
… complexes using SE(3) denoising score matching (DSM) … unsupervised binding energy
prediction framework for small molecules and antibodies. The basic idea is to learn an energy-…

AlphaFold3, a secret sauce for predicting mutational effects on protein-protein interactions

W Lu, J Zhang, J Rao, Z Zhang, S Zheng - bioRxiv, 2024 - biorxiv.org
… , a commonly used binding energy dataset. We demonstrate … energy landscapes are
learned through unsupervised pre-… input backbone structure, while DSMBind [19] predicts muta…

Loop-Diffusion: an equivariant diffusion model for designing and scoring protein loops

K Borisiak, GM Visani, A Nourmohammad - arXiv preprint arXiv …, 2024 - arxiv.org
… for zero-shot prediction of proteinprotein binding energy by carefully selecting the … DSMBind:
SE(3) denoising score matching for unsupervised binding energy prediction and nanobody

[HTML][HTML] Unified Sampling and Ranking for Protein Docking with DFMDock

LS Chu, S Sarma, JJ Gray - bioRxiv, 2024 - pmc.ncbi.nlm.nih.gov
… We introduce DFMDock (Denoising Force Matching Dock), a … DSMBind [29] adopts a similar
framework for protein-protein … energy function correlates more strongly with binding energy

Boltzmann-Aligned Inverse Folding Model as a Predictor of Mutational Effects on Protein-Protein Interactions

X Jiao, W Mao, W Jin, P Yang, H Chen… - arXiv preprint arXiv …, 2024 - arxiv.org
… Spearman coefficients of 0.3201 (unsupervised) and 0.5134 (… of our method on binding
energy prediction, protein-protein … DSMBind is an unsupervised method trained on 3,416 …

Protein binding affinity prediction under multiple substitutions applying eGNNs on Residue and Atomic graphs combined with Language model information: eGRAL

A Fiorellini-Bernardis, S Boyer, C Brunken… - arXiv preprint arXiv …, 2024 - arxiv.org
… fully unsupervised manner, NERE predicts absolute binding … single point mutations and
scored binding energy changes ∆∆G: … to train via denoising score matching and have the model …

Rosetta Energy Approximation Using a Machine Learning Approach

S Wei - 2024 - jscholarship.library.jhu.edu
unsupervised learning. For example, DSMBind[15] and Yang et al’s deep neural network
energy … the stability of the entire structure or the binding energy, not the breakdown on a residue…