Recently, layer by layer manufacturing or additive manufacturing (AM) has been used in many application fields. Selective laser melting (SLM) is the most attractive method for building layer by layer from metallic powders. However, applications of AM in general and SLM in particular to industry have some barriers due to the quality of the manufactured parts which are affected by the high residual stresses and large deformation. SLM process is characterized by high heat source and fast solidification which lead to large thermal stress. The aim of this research is to develop a system for predicting the printed part quality during SLM process by simulation in consideration of the temperature distribution on the workpiece. For carrying out the system, model for predicting the temperature distribution was established. From this model, influences of process parameters to temperature distribution were analysed. The thermal model in consideration of relationship among printing parameters with temperature distribution is used for optimizing printing process parameters. Then, these results are used for calculating residual stress and predicting the workpiece deformation. The functionality of the proposed predictive system is proven through a case study on aluminium material manufactured on a MetalSys150-SLM machine.