Falling is one of the leading causes of serious health decline or injury-related deaths in the elderly. For survivors of a fall, the resulting health expenses can be a devastating burden, largely because of the long recovery time and potential comorbidities that ensue. The detection of a fall is, therefore, important in care of the elderly for decreasing the reaction time by the care-givers especially for those in care who are particularly frail or living alone. Recent advances in motion-sensor technology have enabled wearable sensors to be used efficiently for pervasive care of the elderly. In addition to fall detection, it is also important to determine the direction of a fall, which could help in the location of joint weakness or post-fall fracture. This work uses a waist-worn sensor, encompassing a 3D accelerometer and a barometric pressure sensor, for reliable fall detection and the determination of the direction of a fall. Also assessed is an efficient analysis framework suitable for on-node implementation using a low-power micro-controller that involves both feature extraction and fall detection. A detailed laboratory analysis is presented validating the practical application of the system.