Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)

AT Holland, CJ Williamson, F Sgouridis… - …, 2019 - bg.copernicus.org
Biogeosciences, 2019bg.copernicus.org
Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the
ice surface (supraglacial environments). Recently, it has been shown that Streptophyte
glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice
Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little
is known about the constraints, such as nutrient availability, on this large-scale algal bloom.
In this study, we investigate the relative abundances of dissolved inorganic and dissolved …
Abstract
Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93 % of the total dissolved nitrogen and 67 % of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 µM for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 µM for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 µM for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 µM for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 µM, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 µM for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 µM, medium: 173 µM and high: 242 µM) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 µM, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as , in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae.
bg.copernicus.org
以上显示的是最相近的搜索结果。 查看全部搜索结果