Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies

Y Hayashi-Takanaka, K Maehara, A Harada… - Chromosome …, 2015 - Springer
Y Hayashi-Takanaka, K Maehara, A Harada, T Umehara, S Yokoyama, C Obuse, Y Ohkawa
Chromosome Research, 2015Springer
Post-translational histone modifications play a critical role in genome functions such as
epigenetic gene regulation and genome maintenance. The tail of the histone H4 N-terminus
contains several amino acids that can be acetylated and methylated. Some of these
modifications are known to undergo drastic changes during the cell cycle. In this study, we
generated a panel of mouse monoclonal antibodies against histone H4 modifications,
including acetylation at K5, K8, K12, and K16, and different levels of methylation at K20 …
Abstract
Post-translational histone modifications play a critical role in genome functions such as epigenetic gene regulation and genome maintenance. The tail of the histone H4 N-terminus contains several amino acids that can be acetylated and methylated. Some of these modifications are known to undergo drastic changes during the cell cycle. In this study, we generated a panel of mouse monoclonal antibodies against histone H4 modifications, including acetylation at K5, K8, K12, and K16, and different levels of methylation at K20. Their specificity was evaluated by ELISA and immunoblotting using synthetic peptide and recombinant proteins that harbor specific modifications or amino acid substitutions. Immunofluorescence confirmed the characteristic distributions of target modifications. An H4K5 acetylation (H4K5ac)-specific antibody CMA405 reacted with K5ac only when the neighboring K8 was unacetylated. This unique feature allowed us to detect newly assembled H4, which is diacetylated at K5 and K12, and distinguish it from hyperacetylated H4, where K5 and K8 are both acetylated. Chromatin immunoprecipiation combined with deep sequencing (ChIP-seq) revealed that acetylation of both H4K8 and H4K16 were enriched around transcription start sites. These extensively characterized and highly specific antibodies will be useful for future epigenetics and epigenome studies.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果