INTRODUCTION
Ring material has long been thought to enter Saturn’s atmosphere, modifying its atmospheric and ionospheric chemistry. This phenomenon, dubbed “ring rain,” involves the transport of charged dust particles from the main rings along the planetary magnetic field.
RATIONALE
At the end of the Cassini mission, measurements by onboard instruments tested this hypothesis as well as whether ring material falls directly into the equatorial atmosphere. The final 22 orbits of the Cassini mission sent the spacecraft through the gap between the atmosphere and the innermost of the broad ring system, the D-ring.
RESULTS
The Magnetospheric Imaging Instrument—designed to measure energetic neutral atoms, ions, and electrons—recorded very small dust grains [8000 to 40,000 unified atomic mass units (u), or roughly 1- to 3-nm radius] in two sensors. At 3000-km altitude, a peak rate of ~300,000 counts s–1 was detected by one sensor as Cassini crossed the equatorial plane. At lower altitude (1700 to 2000 km), a second sensor recorded positively charged dust in the upper atmosphere and ionosphere over a size range of ~8000 to 40,000 u (~1 to 2 nm, assuming the density of ice).
Consistent with this observation, larger dust in the 0.1- to 1-µm range was detected by the Cassini Dust Analyzer and the Radio and Plasma Wave Science instrument.
CONCLUSION
We modeled the interaction of dust with the H and H2 exospheric populations known to populate the gap. Collisions between small dust grains and H atoms provide sufficient drag to de-orbit the dust, causing it to plunge into the atmosphere over ~4 hours. The analysis indicates that at least ~5 kg s−1 of dust is continuously precipitating into the atmosphere. At 3000-km altitude, the dust is distributed symmetrically about the equator, mostly between ±2° latitude with a peak density of ~0.1 cm−3. On the wings of the distribution, consistent with ring rain transport along the magnetic field, almost all of the dust was observed to be charged. At the 2000 to 1700 km altitude, the dust has reached a diffusive terminal velocity and, although showing some bias toward the equator, is ordered mostly by a scale height of ~180 km in altitude. The most probable source for this dust population is the innermost bright ringlet of the D-ring, known as the D68 ringlet.
We predict that this kinetic process generates a highly anisotropic neutral hydrogen population, concentrated near the equatorial plane with periapses between ~4000 and 7000 km, and apoapses ranging to as high as 10 Saturn radii, with a small fraction on escape trajectories.
Ring dust
(Top left) Data and model fits for the equatorial dust population near 3000-km altitude for three orbits through the D-ring gap. HV, plate detector high voltage. Red line uses left scale (percent). (Bottom left) Dust counts (blue) from ~2000 to 1700 km (modulated by sensor energy/charge steps, green), ordered by altitude and latitude, consistent with diffusive transport. (Right) Model trajectory of a dust particle in three frames of reference, as collisions with exospheric hydrogen degrade its velocity. Saturn has been shrunk to expand the gap for clarity.