Nonimmunological connective tissue phenotypes in humans are common among some congenital and acquired allergic diseases. Several of these congenital disorders have been associated with either increased TGF-β activity or impaired STAT3 activation, suggesting that these pathways might intersect and that their disruption may contribute to atopy. In this study, we show that STAT3 negatively regulates TGF-β signaling via ERBB2-interacting protein (ERBIN), a SMAD anchor for receptor activation and SMAD2/3 binding protein. Individuals with dominant-negative STAT3 mutations (STAT3mut) or a loss-of-function mutation in ERBB2IP (ERBB2IPmut) have evidence of deregulated TGF-β signaling with increased regulatory T cells and total FOXP3 expression. These naturally occurring mutations, recapitulated in vitro, impair STAT3–ERBIN–SMAD2/3 complex formation and fail to constrain nuclear pSMAD2/3 in response to TGF-β. In turn, cell-intrinsic deregulation of TGF-β signaling is associated with increased functional IL-4Rα expression on naive lymphocytes and can induce expression and activation of the IL-4/IL-4Rα/GATA3 axis in vitro. These findings link increased TGF-β pathway activation in ERBB2IPmut and STAT3mut patient lymphocytes with increased T helper type 2 cytokine expression and elevated IgE.