The ignition behavior of n-dodecane micro-pilot spray in a lean-premixed methane/air charge was investigated in an optically accessible Rapid Compression-Expansion Machine at dual-fuel engine-like pressure/temperature conditions. The pilot fuel was admitted using a coaxial single-hole 100 µm injector mounted on the cylinder periphery. Optical diagnostics include combined high-speed CH2O-PLIF (10 kHz) and Schlieren (80 kHz) imaging for detection of the first-stage ignition, and simultaneous high-speed OH* chemiluminescence (40 kHz) imaging for high-temperature ignition. The aim of this study is to enhance the fundamental understanding of the interaction of methane with the auto-ignition process of short pilot-fuel injections. Addition of methane into the air charge considerably prolongs ignition delay of the pilot spray with an increasing effect at lower temperatures and with higher methane/air equivalence ratios. The temporal separation of the first CH2O detection and high-temperature ignition was found almost constant regardless of methane content. This was interpreted as methane mostly deferring the cool-flame reactivity. In order to understand the underlying mechanisms of this interaction, experimental investigations were complemented with 1D-flamelet simulations using detailed chemistry, confirming the chemical influence of methane deferring the reactivity in the pilot-fuel lean mixtures. This shifts the onset of first-stage reactivity towards the fuel-richer conditions. Consequently, the onset of the turbulent cool-flame is delayed, leading to an overall increased high-temperature ignition delay. Overall, the study reveals a complex interplay between entrainment, low T and high T chemistry and micro-mixing for dual-fuel auto-ignition processes for which the governing processes were identified.