Effect of singly, doubly and triply ionized ions on downconversion photoluminescence in Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor: A comparative study

AR Kadam, RS Yadav, GC Mishra, SJ Dhoble - Ceramics International, 2020 - Elsevier
Ceramics International, 2020Elsevier
We report a change in the red photoluminescence of the Eu 3+ doped Na 2 Sr 2 Al 2 PO 4 Cl
9 phosphor via doping of singly, doubly and triply ionized ions. The synthesized phosphors
show good crystalline nature. The EDS analysis confirms the presence of desired elements
in the phosphor samples. The vibrational feature of the phosphor was confirmed by FTIR
analysis. The photoluminescence excitation spectra of the phosphor show three peaks at
317, 395 and 467 nm. The Eu 3+ doped Na 2 Sr 2 Al 2 PO 4 Cl 9 phosphor emits intense red …
Abstract
We report a change in the red photoluminescence of the Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor via doping of singly, doubly and triply ionized ions. The synthesized phosphors show good crystalline nature. The EDS analysis confirms the presence of desired elements in the phosphor samples. The vibrational feature of the phosphor was confirmed by FTIR analysis. The photoluminescence excitation spectra of the phosphor show three peaks at 317, 395 and 467 nm. The Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor emits intense red color on excitations with 395 and 467 nm wavelengths. However, the photoluminescence intensity of the phosphor is larger for 395 nm excitation. When the singly, doubly and triply ionized ions are co-doped in the Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor (i.e. F, WO42−, MoO42−, VO43−, La3+, and Y3+) the photoluminescence intensity of the phosphor is decreased significantly. The decrease in photoluminescence intensity is due to change in local crystal structure created by these ions. Interestingly, the photoluminescence intensity of phosphor increases many times when the (Y3+) ion incorporated phosphor is excited with 317 nm wavelength. The CIE diagram shows color emitted in the red region of visible spectrum and the color purity is larger for triply ionized (Y3+) ion. Thus, the singly, doubly and triply ionized ions activated Na2Sr2Al2PO4Cl9: Eu3+ phosphor may be used in displays devices, photonic devices, solid state lighting and white LEDs.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果