Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches

JH Sul, B Han, C Ye, T Choi, E Eskin - PLoS genetics, 2013 - journals.plos.org
PLoS genetics, 2013journals.plos.org
Gene expression data, in conjunction with information on genetic variants, have enabled
studies to identify expression quantitative trait loci (eQTLs) or polymorphic locations in the
genome that are associated with expression levels. Moreover, recent technological
developments and cost decreases have further enabled studies to collect expression data in
multiple tissues. One advantage of multiple tissue datasets is that studies can combine
results from different tissues to identify eQTLs more accurately than examining each tissue …
Gene expression data, in conjunction with information on genetic variants, have enabled studies to identify expression quantitative trait loci (eQTLs) or polymorphic locations in the genome that are associated with expression levels. Moreover, recent technological developments and cost decreases have further enabled studies to collect expression data in multiple tissues. One advantage of multiple tissue datasets is that studies can combine results from different tissues to identify eQTLs more accurately than examining each tissue separately. The idea of aggregating results of multiple tissues is closely related to the idea of meta-analysis which aggregates results of multiple genome-wide association studies to improve the power to detect associations. In principle, meta-analysis methods can be used to combine results from multiple tissues. However, eQTLs may have effects in only a single tissue, in all tissues, or in a subset of tissues with possibly different effect sizes. This heterogeneity in terms of effects across multiple tissues presents a key challenge to detect eQTLs. In this paper, we develop a framework that leverages two popular meta-analysis methods that address effect size heterogeneity to detect eQTLs across multiple tissues. We show by using simulations and multiple tissue data from mouse that our approach detects many eQTLs undetected by traditional eQTL methods. Additionally, our method provides an interpretation framework that accurately predicts whether an eQTL has an effect in a particular tissue.
PLOS
以上显示的是最相近的搜索结果。 查看全部搜索结果