We investigated the effects of elevated CO2 (600 μl l−1 vs 350 μl l−1) and phosphorus supply (1 g P m−2 year−1 vs unfertilized) on intact monoliths from species-rich calcareous grassland in a greenhouse. Aboveground community dry mass remained almost unaffected by elevated CO2 in the first year (+6%, n.s.), but was significantly stimulated by CO2 enrichment in year two (+26%, P<0.01). Among functional groups, only graminoids contributed significantly to this increase. The effect of phosphorus alone on community biomass was small in both years and marginally significant only when analyzed with MANOVA (+6% in year one, +9% in year two, 0.1 ≥P > 0.05). Belowground biomass and stubble after two seasons were not different in elevated CO2 and when P was added. The small initial increase in aboveground community biomass under elevated CO2 is explained by the fact that some species, in particular Carex flacca, responded very positively right from the beginning, while others, especially the dominant Bromus erectus, responded negatively to CO2 enrichment. Shifts in community composition towards more responsive species explain the much larger CO2 response in the second year. These shifts, i.e., a decline in xerophytic elements (B. erectus) and an increase in mesophytic grasses and legumes occurred independently of treatments in all monoliths but were accelerated significantly by elevated CO2. The difference in average biomass production at elevated compared to ambient CO2 was higher when P was supplied (at the community level the CO2 response was enhanced from 20% to 33% when P was added, in graminoids from 17% to 27%, in legumes from 4% to 60%, and in C. flacca from 120% to 298% by year two). Based on observations in this and similar studies, we suggest that interactions between CO2 concentration, species presence, and nutrient availability will govern community responses to elevated CO2.