Up to 90% of glyphosate was removed in 40 min by a 2:1 Mg2Al-layered double oxide (LDO) at pH 10, and the adsorption kinetics fitted a pseudo-second-order law. The adsorption isotherms were type L, and the Langmuir model best fitted the experimental data, with qmax of 158.22 μg/mg at 25 °C. The intraparticle diffusion model suggested that the adsorption process is dependent on the thickness and formation of the film at the solution/solid interface. The XRD results excluded the intercalation of glyphosate anions, and FTIR along with solid-state 13C and 31P MAS NMR confirmed that the glyphosate anions interact through the carboxylate and/or phosphonate moieties, both in end-on and side-on modes to the LDO surface. Glyphosate removal was also investigated in the presence of different anionic species, and simultaneous adsorption showed that carbonate and phosphate ions strongly influence glyphosate removal.