Enabling technologies for manipulating multiple genes on complex pathways

C Halpin, A Barakate, BM Askari, JC Abbott, MD Ryan - Plant Cell Walls, 2001 - Springer
C Halpin, A Barakate, BM Askari, JC Abbott, MD Ryan
Plant Cell Walls, 2001Springer
Many complex biochemical pathways in plants have now been manipulated genetically,
usually by suppression or over-expression of single genes. Further exploitation of the
potential for plant genetic manipulation, both as a research tool and as a vehicle for plant
biotechnology, will require the co-ordinate manipulation of multiple genes on a pathway.
This goal is currently very difficult to achieve. A number of approaches have been taken to
combine or 'pyramid'transgenes in one plant and have met with varying degrees of success …
Abstract
Many complex biochemical pathways in plants have now been manipulated genetically, usually by suppression or over-expression of single genes. Further exploitation of the potential for plant genetic manipulation, both as a research tool and as a vehicle for plant biotechnology, will require the co-ordinate manipulation of multiple genes on a pathway. This goal is currently very difficult to achieve. A number of approaches have been taken to combine or ‘pyramid’ transgenes in one plant and have met with varying degrees of success. These approaches include sexual crossing, re-transformation, co-transformation and the use of linked transgenes. Novel, alternative ‘enabling’ technologies are also being developed that aim to use single transgenes to manipulate the expression of multiple genes. A chimeric transgene with linked partial gene sequences placed under the control of a single promoter can be used to co-ordinately suppress numerous plant endogenous genes. Constructs modelled on viral polyproteins can be used to simultaneously introduce multiple protein-coding genes into plant cells. In the course of our work on the lignin biosynthetic pathway, we have tested both conventional and novel methods for achieving co-ordinate suppression or over-expression of up to three plant lignin genes. In this article we review the literature concerning the manipulation of multiple genes in plants. We also report on our own experiences and results using different methods to perform directed manipulation of lignin biosynthesis in tobacco.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References