Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018cm−3 and resistivity of 10−1Ωcm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.