Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation

M Cetera, GR Ramirez-San Juan, PW Oakes… - Nature …, 2014 - nature.com
Nature communications, 2014nature.com
Tissues use numerous mechanisms to change shape during development. The Drosophila
egg chamber is an organ-like structure that elongates to form an elliptical egg. During
elongation the follicular epithelial cells undergo a collective migration that causes the egg
chamber to rotate within its surrounding basement membrane. Rotation coincides with the
formation of a 'molecular corset', in which actin bundles in the epithelium and fibrils in the
basement membrane are all aligned perpendicular to the elongation axis. Here we show …
Abstract
Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a ‘molecular corset’, in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell’s leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果