In line with the current trajectory of healthcare reform, significant emphasis has been placed on improving the utilization of data collected during a clinical encounter. Although the structured fields of electronic health records have provided a convenient foundation on which to begin such efforts, it was well understood that a substantial portion of relevant information is confined in the free-text narratives documenting care. Unfortunately, extracting meaningful information from such narratives is a non-trivial task, traditionally requiring significant manual effort. Today, computational approaches from a field known as Natural Language Processing (NLP) are poised to make a transformational impact in the analysis and utilization of these documents across healthcare practice and research, particularly in procedure-heavy sub-disciplines such as gastroenterology (GI). As such, this manuscript provides a clinically focused review of NLP systems in GI practice. It begins with a detailed synopsis around the state of NLP techniques, presenting state-of-the-art methods and typical use cases in both clinical settings and across other domains. Next, it will present a robust literature review around current applications of NLP within four prominent areas of gastroenterology including endoscopy, inflammatory bowel disease, pancreaticobiliary, and liver diseases. Finally, it concludes with a discussion of open problems and future opportunities of this technology in the field of gastroenterology and health care as a whole.