Exceptionally Enhanced Electrode Activity of (Pr,Ce)O2−δ‐Based Cathodes for Thin‐Film Solid Oxide Fuel Cells

HG Seo, Y Choi, WC Jung - Advanced Energy Materials, 2018 - Wiley Online Library
Advanced Energy Materials, 2018Wiley Online Library
It is shown that an electrochemically‐driven oxide overcoating substantially improves the
performance of metal electrodes in high‐temperature electrochemical applications. As a
case study, Pt thin films are overcoated with (Pr, Ce) O2− δ (PCO) by means of a cathodic
electrochemical deposition process that produces nanostructured oxide layers with a high
specific surface area and uniform metal coverage and then the coated films are examined as
an O2‐electrode for thin‐film‐based solid oxide fuel cells. The combination of excellent …
Abstract
It is shown that an electrochemically‐driven oxide overcoating substantially improves the performance of metal electrodes in high‐temperature electrochemical applications. As a case study, Pt thin films are overcoated with (Pr,Ce)O2−δ (PCO) by means of a cathodic electrochemical deposition process that produces nanostructured oxide layers with a high specific surface area and uniform metal coverage and then the coated films are examined as an O2‐electrode for thin‐film‐based solid oxide fuel cells. The combination of excellent conductivity, reactivity, and durability of PCO dramatically improves the oxygen reduction reaction rate while maintaining the nanoscale architecture of PCO layers and thus the performance of the PCO‐coated Pt thin‐film electrodes at high temperatures. As a result, with an oxide coating step lasting only 5 min, the electrode resistance is successfully reduced by more than 1000 times at 500 °C in air. These observations provide a new direction for the design of high‐performance electrodes for high‐temperature electrochemical cells.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果