Exotic photonic molecules via Lennard-Jones-like potentials

P Bienias, MJ Gullans, M Kalinowski, AN Craddock… - Physical Review Letters, 2020 - APS
Physical Review Letters, 2020APS
Ultracold systems offer an unprecedented level of control of interactions between atoms. An
important challenge is to achieve a similar level of control of the interactions between
photons. Towards this goal, we propose a realization of a novel Lennard-Jones-like
potential between photons coupled to the Rydberg states via electromagnetically induced
transparency (EIT). This potential is achieved by tuning Rydberg states to a Förster
resonance with other Rydberg states. We consider few-body problems in 1D and 2D …
Ultracold systems offer an unprecedented level of control of interactions between atoms. An important challenge is to achieve a similar level of control of the interactions between photons. Towards this goal, we propose a realization of a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT). This potential is achieved by tuning Rydberg states to a Förster resonance with other Rydberg states. We consider few-body problems in 1D and 2D geometries and show the existence of self-bound clusters (“molecules”) of photons. We demonstrate that for a few-body problem, the multibody interactions have a significant impact on the geometry of the molecular ground state. This leads to phenomena without counterparts in conventional systems: For example, three photons in two dimensions preferentially arrange themselves in a line configuration rather than in an equilateral-triangle configuration. Our result opens a new avenue for studies of many-body phenomena with strongly interacting photons.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果