Extraction process optimization of polyphenols from Indian Citrus sinensis – as novel antiglycative agents in the management of diabetes mellitus

A Shakthi Deve, T Sathish kumar, K Kumaresan… - Journal of Diabetes & …, 2014 - Springer
A Shakthi Deve, T Sathish kumar, K Kumaresan, VS Rapheal
Journal of Diabetes & Metabolic Disorders, 2014Springer
Background Diabetes mellitus is a chronic metabolic disorder characterized by increased
blood glucose level. It has become an epidemic disease in the 21st century where, India
leads the world with largest number of diabetic subjects. Non-enzymatic glycosylation
(glycation) is severe form of diabetes, occurs between reducing sugar and proteins which
results in the formation of advanced glycation end products (AGEs) that leads to the other
complicated secondary disorders. In this context, Mangifera indica (Mango), Syzygium …
Background
Diabetes mellitus is a chronic metabolic disorder characterized by increased blood glucose level. It has become an epidemic disease in the 21st century where, India leads the world with largest number of diabetic subjects. Non-enzymatic glycosylation (glycation) is severe form of diabetes, occurs between reducing sugar and proteins which results in the formation of advanced glycation end products (AGEs) that leads to the other complicated secondary disorders. In this context, Mangifera indica (Mango), Syzygium cumini (Jambul), Vitis vinifera (Grapes), Citrus sinensis (Orange), Artocarpus heterophyllus (Jackfruit), Manilkara zapota (Sapodilla) seeds were evaluated for their antiglyation activity. Attempts were made to isolate the polyphenols in the seeds that have recorded the maximum activity.
Methods
Different extraction methods (shake flask, centrifugation and pressurized hot water) using various extractants (organic solvents, hot water and pressurized hot water) were adopted to investigate the in vitro antiglycation activity. Central composite (CCD) design based Response Surface Methodology (RSM) was espoused to optimize the extraction process of polyphenols from the fruit seeds that have recorded poor antiglycation activity. The PTLC analysis was performed to isolate the polyphenols (Flavonoids and phenolic acids) and LC-PDA-MS analysis was done for structure prediction.
Results
Pressurized hot water extraction of Artocarpus heterophyllus (87.52%) and Citrus sinensis seeds (74.79%) was found to possess high and low antiglycation activity, respectively. The RSM mediated optimization process adopted for the Citrus sinensis seeds have revealed that 1:15 solvent ratio (hexane to heptane), 6 minutes and 1:20 solid to liquid ratio as the optimal conditions for the extraction of polyphenols with a maximum antiglycation activity (89.79%). The LC-PDA-MS analysis of preparative thin layer chromatography (PTLC) eluates of Artocarpus heterophyllus seed has showed the presence of compounds like quercetin (301.2), 4-hydroxy phenyl acetic acid (149.0), rhamnosyl-di-hexosyl quercetin sulphate (857.6), quercetin-3-O-xyloside (428.2), rutin (613.4), diosmetin (298.1) and luteolin (283.0).
Conclusion
The Artocarpus heterophyllus was observed to possess a significant antiglycation activity and the activity of Citrus sinensis was improved after the optimization process, which proved that both the seeds may be used as a traditional medicine in the management of chronic diabetes mellitus.
Springer