Feedback cooling of a one-electron oscillator

B d'Urso, B Odom, G Gabrielse - Physical review letters, 2003 - APS
Physical review letters, 2003APS
A one-electron oscillator is cooled from 5.2 K to 850 mK using electronic feedback. Novel
quantum jump thermometry reveals a Boltzmann distribution of oscillator energies and
directly measures the corresponding temperature. The ratio of electron temperature and
damping rate (also directly measured) is observed to be a fluctuation-dissipation invariant,
independent of feedback gain, as predicted for noiseless feedback. The sharply reduced
linewidth that results from feedback cooling illustrates the likely importance for improved …
A one-electron oscillator is cooled from 5.2 K to 850 mK using electronic feedback. Novel quantum jump thermometry reveals a Boltzmann distribution of oscillator energies and directly measures the corresponding temperature. The ratio of electron temperature and damping rate (also directly measured) is observed to be a fluctuation-dissipation invariant, independent of feedback gain, as predicted for noiseless feedback. The sharply reduced linewidth that results from feedback cooling illustrates the likely importance for improved fundamental measurements and symmetry tests.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果