A generative adversarial network (GAN) is a generative model that is able to generate fresh content by using several deep learning techniques together. Due to its fascinating applications, including the production of synthetic training data, the creation of art, style-transfer, image-to-image translation, etc., the topic has gained a lot of attraction in the machine learning community. GAN consists of two networks: the generator and the discriminator. The generator will make an effort to create phony samples in an effort to trick the discriminator into thinking they are real samples. In order to distinguish generated samples from both actual and fraudulent samples, the discriminator will strive to do so. The main motive of this chapter is to make use of several types of GANs like StyleGANs, cycle GANs, SRGANs, and conditional GANs to generate various animated characters of different art styles with optimal attractive scores, which can make a huge contribution in the entertainment and media sector.