Groundwater desalination using forward osmosis in Egypt

P Nasr - 2016 - fount.aucegypt.edu
2016fount.aucegypt.edu
Rapid population growth is putting huge stress on limited fresh water sources in Egypt.
Agriculture is considered the major consumer of fresh water in Egypt, consuming more than
80% of fresh water available. Creating new freshwater sources for irrigation purposes
becomes inevitable to meet the increasing demand. Groundwater desalination could be the
solution to this problem. If a low-cost sustainable desalination technology is realized, impact
on the agricultural sector would be remarkable for water stressed country like Egypt …
Abstract
Rapid population growth is putting huge stress on limited fresh water sources in Egypt. Agriculture is considered the major consumer of fresh water in Egypt, consuming more than 80% of fresh water available. Creating new freshwater sources for irrigation purposes becomes inevitable to meet the increasing demand. Groundwater desalination could be the solution to this problem. If a low-cost sustainable desalination technology is realized, impact on the agricultural sector would be remarkable for water stressed country like Egypt. Forward Osmosis (FO) is an innovative membrane separation technology that can be applied to efficiently desalinate groundwater. FO desalination relies on the theory of natural osmotic pressure driven by concentration difference instead of hydraulic pressure in RO (Reverse Osmosis). Thus, desalination can be achieved using significantly low energy. FO desalination process involves the use of a concentrated draw solution (DS), generating elevated osmotic pressure, flowing on one side of a semi-permeable FO membrane, and a feed solution (FS), with a lower osmotic pressure, flowing by the other side. Fresh water leaves the FS and enters the DS by natural diffusion. The diluted DS is then separated from the fresh water and draw solutes are recovered. One application of FO process is Fertilizer Drawn Forward Osmosis (FDFO). This application offers a unique advantage as separation and recovery of draw solute is not essential since the draw solution adds value to the end product. The convenience of FDFO desalination is that produced water can be directly utilized for fertigation because fertilizers are needed anyway for the plants avoiding the need for separation and recovery of draw solutes. However, FDFO desalination has some limitations that should be considered. Novel draw solutions and capable FO membranes are the main concern of most FO researchers as both greatly affect overall process efficiency. The high nutrient content in product water is another limitation making meeting irrigation water quality standards a challenge. Applying FDFO technology in Egypt for augmenting irrigation water by desalinating abundant brackish groundwater is investigated in this work. As Egypt is a groundwater-rich country, application of FDFO desalination technology would lead to a revolutionary platform where unutilized brackish groundwater can be efficiently made use of to generate valuable nutrient-rich irrigation water. Egyptian irrigation schemes and mapping of groundwater aquifers in Egypt have been carefully investigated. Based on a carefully studied selection criteria, two proposed locations are suggested for this application in Egypt: 1) Nile Valley and Delta region and 2) Red Sea coast in Eastern Desert and Sinai region. In Nile valley and Delta region, it is suggested to apply FDFO technology coupled with localized irrigation instead of flood irrigation. The suggested technique could possibly cultivate 1 million feddan using renewable groudnwater. Proposed scheme will lead to a healthier Nile River and is expected to eventually minimize further soil salinization being a reported problem in the area which negatively affects crop yield In Red Sea coast in Eastern Desert and Sinai region, FDFO desalination is a promising technology to help alleviate the severe water scarcity problem inhibiting the area’ s development. Already existing RO facilities could be easily integrated to the suggested FDFO technology. In this study it is suggested to have decentralized small-scale farms, instead of hundreds of thousands of feddan as is common in Delta and Nile valley regions. This will minimize water losses and keep the …
fount.aucegypt.edu
以上显示的是最相近的搜索结果。 查看全部搜索结果