High intra-specific variation in avian body condition responses to climate limits generalisation across species

N McLean, HP Van Der Jeugd, M van de Pol - PLoS One, 2018 - journals.plos.org
PLoS One, 2018journals.plos.org
It is generally assumed that populations of a species will have similar responses to climate
change, and thereby that a single value of sensitivity will reflect species-specific responses.
However, this assumption is rarely systematically tested. High intraspecific variation will
have consequences for identifying species-or population-level traits that can predict
differences in sensitivity, which in turn can affect the reliability of projections of future climate
change impacts. We investigate avian body condition responses to changes in six climatic …
It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology.
PLOS
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References