High-speed detection of DNA translocation in nanopipettes

RL Fraccari, P Ciccarella, A Bahrami, M Carminati… - Nanoscale, 2016 - pubs.rsc.org
RL Fraccari, P Ciccarella, A Bahrami, M Carminati, G Ferrari, T Albrecht
Nanoscale, 2016pubs.rsc.org
We present a high-speed electrical detection scheme based on a custom-designed CMOS
amplifier which allows the analysis of DNA translocation in glass nanopipettes on a
microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a
scaling factor of the DNA translocation time equal to p= 1.22, which is different from values
observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a
theoretical model involving electrophoresis, hydrodynamics and surface friction, we show …
We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.
The Royal Society of Chemistry
以上显示的是最相近的搜索结果。 查看全部搜索结果