Hot surface ignition dynamics in premixed hydrogen–air near the lean flammability limit

LR Boeck, J Melguizo-Gavilanes, JE Shepherd - Combustion and Flame, 2019 - Elsevier
Combustion and Flame, 2019Elsevier
The dynamics of ignition of premixed hydrogen–air from a hot glow plug were investigated in
a combined experimental and numerical study. Surface temperatures during heating and at
ignition were obtained from 2-color pyrometry, gas temperatures were measured by high-
speed Mach–Zehnder interferometry, and far-field effects were captured by high-speed
schlieren imaging. Numerical simulations considered detailed chemical kinetics and
differential diffusion effects. In addition to the known cyclic (puffing) combustion …
Abstract
The dynamics of ignition of premixed hydrogen–air from a hot glow plug were investigated in a combined experimental and numerical study. Surface temperatures during heating and at ignition were obtained from 2-color pyrometry, gas temperatures were measured by high-speed Mach–Zehnder interferometry, and far-field effects were captured by high-speed schlieren imaging. Numerical simulations considered detailed chemical kinetics and differential diffusion effects. In addition to the known cyclic (puffing) combustion phenomenon, singular ignition events (single puff) were observed near the lean flammability limit. Detailed analysis of the results of our numerical simulations reveal the existence of multiple combustion transients within the thermal boundary layer following the initial ignition event and, at late times, sustained chemical reaction within a thermal plume above the glow plug. The results have significant implications for ignition from hot surfaces within near-flammability limit mixtures, at the edge of plumes resulting from accidental release of hydrogen, or within the containments of nuclear power plants during severe accidents.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References