How pre-trained word representations capture commonsense physical comparisons

P Goel, S Feng, J Boyd-Graber - Proceedings of the First …, 2019 - aclanthology.org
Proceedings of the First Workshop on Commonsense Inference in Natural …, 2019aclanthology.org
Understanding common sense is important for effective natural language reasoning. One
type of common sense is how two objects compare on physical properties such as size and
weight: eg,'is a house bigger than a person?'. We probe whether pre-trained representations
capture comparisons and find they, in fact, have higher accuracy than previous approaches.
They also generalize to comparisons involving objects not seen during training. We
investigate how such comparisons are made: models learn a consistent ordering over all the …
Abstract
Understanding common sense is important for effective natural language reasoning. One type of common sense is how two objects compare on physical properties such as size and weight: eg,‘is a house bigger than a person?’. We probe whether pre-trained representations capture comparisons and find they, in fact, have higher accuracy than previous approaches. They also generalize to comparisons involving objects not seen during training. We investigate how such comparisons are made: models learn a consistent ordering over all the objects in the comparisons. Probing models have significantly higher accuracy than those baseline models which use dataset artifacts: eg, memorizing some words are larger than any other word.
aclanthology.org
以上显示的是最相近的搜索结果。 查看全部搜索结果