Hypofractionated EGFR tyrosine kinase inhibitor limits tumor relapse through triggering innate and adaptive immunity

Z Liu, C Han, C Dong, A Shen, E Hsu, Z Ren, C Lu… - Science …, 2019 - science.org
Z Liu, C Han, C Dong, A Shen, E Hsu, Z Ren, C Lu, L Liu, A Zhang, C Timmerman, Y Pu…
Science immunology, 2019science.org
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are a first-line
therapy for rapidly killing tumors such as those associated with non–small cell lung cancer
by blocking oncogenic receptor signaling, but tumor relapse often occurs. Here, we have
observed that hypofractionated EGFR TKI treatment (HypoTKI) is more potent than standard
hyperfractionated EGFR TKI treatment (HyperTKI), and its antitumor effect associated with
preventing tumor relapse depends on T cells. HypoTKI triggers greater innate sensing for …
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are a first-line therapy for rapidly killing tumors such as those associated with non–small cell lung cancer by blocking oncogenic receptor signaling, but tumor relapse often occurs. Here, we have observed that hypofractionated EGFR TKI treatment (HypoTKI) is more potent than standard hyperfractionated EGFR TKI treatment (HyperTKI), and its antitumor effect associated with preventing tumor relapse depends on T cells. HypoTKI triggers greater innate sensing for type I IFN and CXCL10 production through the Myd88 signaling pathway to enhance tumor-specific T cell infiltration and reactivation. We also demonstrate that timely programmed cell death ligand–1 (PD-L1) blockade can synergize with HypoTKI to control advanced large tumors and effectively limit tumor relapse without severe side effects. Our study provides evidence for exploring the potential of a proper combination of EGFR TKIs and immunotherapy as a first-line treatment for treating EGFR-driven tumors.
AAAS
以上显示的是最相近的搜索结果。 查看全部搜索结果