Cities are recognized as the main consumers of energy on the planet, and to optimize their energy consumption and enhance the potential of using renewable energy sources, built form and density are considered highly influential factors. The energy efficiency of compact built forms has been debated by many studies. Meanwhile, urban density, as an attribute of urban form, has yet to be well defined due to the diversity of density indicators used in literature. Hence, there is a lack of integrated guidelines for urban density indicators and their relationships with urban built forms in urban energy studies.
This thesis establishes a framework to demonstrate the inter-correlation of urban built form, density and energy for residential buildings, and the impact of climate as an influential parameter is investigated by adopting a mixed methods research approach. It primarily identifies the relationship between the urban built form and density by introducing a novel indicator of urban form termed the Form Signature. It demonstrates the simultaneous correlation of two selected density indicators with influential variables developed from the geometry of four selected urban built forms. An urban energy simulation software package, CitySim, is adopted to conduct sensitivity analyses. The simulation models are validated against data from a known building group. An energy indicator, termed Energy Equity, is also introduced that simultaneously considers the amount of building energy demand as well as energy generation by building-mounted PVs.